10.深入k8s:调度的优先级及抢占机制源码分析

转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com

源码版本是1.19

84253409_p0

上一篇我们将了获取node成功的情况,如果是一个优先pod获取node失败,那么就会进入到抢占环节中,那么抢占环节k8s会做什么呢,抢占是如何发生的,哪些资源会被抢占这些都是我们这篇要研究的内容。

调度的优先级与抢占机制

正常情况下,当一个 Pod 调度失败后,它就会被暂时“搁置”起来,直到 Pod 被更新,或者集群状态发生变化,调度器才会对这个 Pod 进行重新调度。但是我们可以通过PriorityClass优先级来避免这种情况。通过设置优先级一些优先级比较高的pod,如果pod 调度失败,那么并不会被”搁置”,而是会”挤走”某个 node 上的一些低优先级的 pod,这样就可以保证高优先级的 pod 调度成功。

要使用PriorityClass,首先我们要定义一个PriorityClass对象,例如:

apiVersion: v1
kind: PriorityClass
metadata:
  name: high-priority
value: 1000000
globalDefault: false
description: "This priority class should be used for XYZ service pods only."

value越高则优先级越高;globalDefault 被设置为 true 的话,那就意味着这个 PriorityClass 的值会成为系统的默认值,如果是false则表示我们只希望声明使用该 PriorityClass 的 Pod 拥有值为 1000000 的优先级,而对于没有声明 PriorityClass 的 Pod 来说,它们的优先级就是 0。

Pod 就可以声明使用它了:

apiVersion: v1
kind: Pod
metadata:
  name: nginx
  labels:
    env: test
spec:
  containers:
  - name: nginx
    image: nginx
    imagePullPolicy: IfNotPresent
  priorityClassName: high-priority

高优先级的 Pod 调度失败的时候,调度器的抢占能力就会被触发。调度器就会试图从当前集群里寻找一个节点,使得当这个节点上的一个或者多个低优先级 Pod 被删除后,待调度的高优先级 Pod 就可以被调度到这个节点上。

高优先级Pod进行抢占的时候会将pod的 nominatedNodeName 字段,设置为被抢占的 Node 的名字。然后,在下一周期中决定是不是要运行在被抢占的节点上,当这个Pod在等待的时候,如果有其他更高优先级的 Pod 也要抢占同一个节点,那么调度器就会清空原抢占者的 spec.nominatedNodeName 字段,从而允许更高优先级的抢占者执行抢占。

源码解析

这里我依旧拿出这张图来进行讲解,上一篇我们将了获取node成功的情况,如果是一个优先pod获取node失败,那么就会进入到抢占环节中。

调度流程

通过上一篇的分析,我们知道,在scheduleOne方法中执行sched.Algorithm.Schedule会选择一个合适的node节点,如果获取node失败,那么就会进入到一个if逻辑中执行抢占。

代码路径:pkg/scheduler/scheduler.go

func (sched *Scheduler) scheduleOne(ctx context.Context) {
    ...
    //为pod资源对象选择一个合适的节点
    scheduleResult, err := sched.Algorithm.Schedule(schedulingCycleCtx, prof, state, pod)
    //获取node失败,抢占逻辑
    if err != nil { 
        //上面调用失败之后,下面会根据pod执行抢占
        nominatedNode := ""
        if fitError, ok := err.(*core.FitError); ok {
            if !prof.HasPostFilterPlugins() {
                klog.V(3).Infof("No PostFilter plugins are registered, so no preemption will be performed.")
            } else { 
                result, status := prof.RunPostFilterPlugins(ctx, state, pod, fitError.FilteredNodesStatuses)
                if status.Code() == framework.Error {
                    klog.Errorf("Status after running PostFilter plugins for pod %v/%v: %v", pod.Namespace, pod.Name, status)
                } else {
                    klog.V(5).Infof("Status after running PostFilter plugins for pod %v/%v: %v", pod.Namespace, pod.Name, status)
                }
                //抢占成功后,将nominatedNodeName设置为被抢占的 Node 的名字,然后重新进入下一个调度周期
                if status.IsSuccess() && result != nil {
                    nominatedNode = result.NominatedNodeName
                }
            } 
            metrics.PodUnschedulable(prof.Name, metrics.SinceInSeconds(start))
        } else if err == core.ErrNoNodesAvailable { 
            metrics.PodUnschedulable(prof.Name, metrics.SinceInSeconds(start))
        } else {
            klog.ErrorS(err, "Error selecting node for pod", "pod", klog.KObj(pod))
            metrics.PodScheduleError(prof.Name, metrics.SinceInSeconds(start))
        }
        sched.recordSchedulingFailure(prof, podInfo, err, v1.PodReasonUnschedulable, nominatedNode)
        return
    }
    ...
}

在这个方法里面RunPostFilterPlugins会执行具体的抢占逻辑,然后返回被抢占的node节点。抢占者并不会立刻被调度到被抢占的 node 上,调度器只会将抢占者的 status.nominatedNodeName 字段设置为被抢占的 node 的名字。然后,抢占者会重新进入下一个调度周期,在新的调度周期里来决定是不是要运行在被抢占的节点上,当然,即使在下一个调度周期,调度器也不会保证抢占者一定会运行在被抢占的节点上。

这样设计的一个重要原因是调度器只会通过标准的 DELETE API 来删除被抢占的 pod,所以,这些 pod 必然是有一定的“优雅退出”时间(默认是 30s)的。而在这段时间里,其他的节点也是有可能变成可调度的,或者直接有新的节点被添加到这个集群中来。

而在抢占者等待被调度的过程中,如果有其他更高优先级的 pod 也要抢占同一个节点,那么调度器就会清空原抢占者的 status.nominatedNodeName 字段,从而允许更高优先级的抢占者执行抢占,并且,这也使得原抢占者本身也有机会去重新抢占其他节点。

接着我们继续看,RunPostFilterPlugins会遍历所有的postFilterPlugins,然后执行runPostFilterPlugin方法:

func (f *frameworkImpl) RunPostFilterPlugins(ctx context.Context, state *framework.CycleState, pod *v1.Pod, filteredNodeStatusMap framework.NodeToStatusMap) (_ *framework.PostFilterResult, status *framework.Status) {
    startTime := time.Now()
    defer func() {
        metrics.FrameworkExtensionPointDuration.WithLabelValues(postFilter, status.Code().String(), f.profileName).Observe(metrics.SinceInSeconds(startTime))
    }()

    statuses := make(framework.PluginToStatus)
    //postFilterPlugins里面只有一个defaultpreemption
    for _, pl := range f.postFilterPlugins {
        r, s := f.runPostFilterPlugin(ctx, pl, state, pod, filteredNodeStatusMap)
        if s.IsSuccess() {
            return r, s
        } else if !s.IsUnschedulable() {
            // Any status other than Success or Unschedulable is Error.
            return nil, framework.NewStatus(framework.Error, s.Message())
        }
        statuses[pl.Name()] = s
    }

    return nil, statuses.Merge()
}

根据我们上一节看的scheduler的初始化可以知道设置的PostFilter如下:

代码路径:pkg/scheduler/algorithmprovider/registry.go

    PostFilter: &schedulerapi.PluginSet{
            Enabled: []schedulerapi.Plugin{
                {Name: defaultpreemption.Name},
            },
        },

可见,目前只有一个defaultpreemption来执行抢占逻辑,在postFilterPlugins循环里面会调用到runPostFilterPlugin然后运行defaultpreemption的PostFilter方法,最后执行到preempt执行具体抢占逻辑。

代码路径:pkg/scheduler/framework/plugins/defaultpreemption/default_preemption.go

func (pl *DefaultPreemption) PostFilter(...) (*framework.PostFilterResult, *framework.Status) {
    ...
    //执行抢占
    nnn, err := pl.preempt(ctx, state, pod, m)
    ...
    return &framework.PostFilterResult{NominatedNodeName: nnn}, framework.NewStatus(framework.Success)
}

抢占的执行流程图如下:

抢占

代码路径:pkg/scheduler/framework/plugins/defaultpreemption/default_preemption.go

func (pl *DefaultPreemption) preempt(ctx context.Context, state *framework.CycleState, pod *v1.Pod, m framework.NodeToStatusMap) (string, error) {
    cs := pl.fh.ClientSet()
    ph := pl.fh.PreemptHandle()
    //返回node列表
    nodeLister := pl.fh.SnapshotSharedLister().NodeInfos()

    pod, err := util.GetUpdatedPod(cs, pod)
    if err != nil {
        klog.Errorf("Error getting the updated preemptor pod object: %v", err)
        return "", err
    }

    //确认抢占者是否能够进行抢占,如果对应的node节点上的pod正在优雅退出(Graceful Termination ),那么就不应该进行抢占
    if !PodEligibleToPreemptOthers(pod, nodeLister, m[pod.Status.NominatedNodeName]) {
        klog.V(5).Infof("Pod %v/%v is not eligible for more preemption.", pod.Namespace, pod.Name)
        return "", nil
    }

    // 查找所有抢占候选者
    candidates, err := FindCandidates(ctx, cs, state, pod, m, ph, nodeLister, pl.pdbLister)
    if err != nil || len(candidates) == 0 {
        return "", err
    }

    //若有 extender 则执行
    candidates, err = CallExtenders(ph.Extenders(), pod, nodeLister, candidates)
    if err != nil {
        return "", err
    }

    // 查找最佳抢占候选者
    bestCandidate := SelectCandidate(candidates)
    if bestCandidate == nil || len(bestCandidate.Name()) == 0 {
        return "", nil
    }

    // 在抢占一个node之前做一些准备工作
    if err := PrepareCandidate(bestCandidate, pl.fh, cs, pod); err != nil {
        return "", err
    }

    return bestCandidate.Name(), nil
}

preempt方法首先会去获取node列表,然后获取最新的要执行抢占的pod信息,接着分下面几步执行抢占:

  1. 调用PodEligibleToPreemptOthers方法,检查抢占者是否能够进行抢占,如果当前的pod已经抢占了一个node节点或者在被抢占node节点中有pod正在执行优雅退出,那么不应该执行抢占;
  2. 调用FindCandidates找到所有node中能被抢占的node节点,并返回候选列表以及node节点中需要被删除的pod;
  3. 若有 extender 则执行CallExtenders;
  4. 调用SelectCandidate方法在所有候选列表中找出最合适的node节点执行抢占;
  5. 调用PrepareCandidate方法删除被抢占的node节点中victim(牺牲者),以及清除NominatedNodeName字段信息;

PodEligibleToPreemptOthers

func PodEligibleToPreemptOthers(pod *v1.Pod, nodeInfos framework.NodeInfoLister, nominatedNodeStatus *framework.Status) bool {
    if pod.Spec.PreemptionPolicy != nil && *pod.Spec.PreemptionPolicy == v1.PreemptNever {
        klog.V(5).Infof("Pod %v/%v is not eligible for preemption because it has a preemptionPolicy of %v", pod.Namespace, pod.Name, v1.PreemptNever)
        return false
    }
    //查看抢占者是否已经抢占过
    nomNodeName := pod.Status.NominatedNodeName
    if len(nomNodeName) > 0 { 
        if nominatedNodeStatus.Code() == framework.UnschedulableAndUnresolvable {
            return true
        }
        //获取被抢占的node节点
        if nodeInfo, _ := nodeInfos.Get(nomNodeName); nodeInfo != nil {
            //查看是否存在正在被删除并且优先级比抢占者pod低的pod
            podPriority := podutil.GetPodPriority(pod)
            for _, p := range nodeInfo.Pods {
                if p.Pod.DeletionTimestamp != nil && podutil.GetPodPriority(p.Pod) < podPriority {
                    // There is a terminating pod on the nominated node.
                    return false
                }
            }
        }
    }
    return true
}

这个方法会检查该pod是否已经抢占过其他node节点,如果是的话就遍历节点上的所有pod对象,如果发现节点上有pod资源对象的优先级小于待调度pod资源对象并处于终止状态,则返回false,不会发生抢占。

接下来看FindCandidates方法:

FindCandidates

func FindCandidates(ctx context.Context, cs kubernetes.Interface, state *framework.CycleState, pod *v1.Pod,
    m framework.NodeToStatusMap, ph framework.PreemptHandle, nodeLister framework.NodeInfoLister,
    pdbLister policylisters.PodDisruptionBudgetLister) ([]Candidate, error) {
    allNodes, err := nodeLister.List()
    if err != nil {
        return nil, err
    }
    if len(allNodes) == 0 {
        return nil, core.ErrNoNodesAvailable
    }

    //找 predicates 阶段失败但是通过抢占也许能够调度成功的 nodes
    potentialNodes := nodesWherePreemptionMightHelp(allNodes, m)
    if len(potentialNodes) == 0 {
        klog.V(3).Infof("Preemption will not help schedule pod %v/%v on any node.", pod.Namespace, pod.Name) 
        if err := util.ClearNominatedNodeName(cs, pod); err != nil {
            klog.Errorf("Cannot clear 'NominatedNodeName' field of pod %v/%v: %v", pod.Namespace, pod.Name, err) 
        }
        return nil, nil
    }
    if klog.V(5).Enabled() {
        var sample []string
        for i := 0; i < 10 && i < len(potentialNodes); i++ {
            sample = append(sample, potentialNodes[i].Node().Name)
        }
        klog.Infof("%v potential nodes for preemption, first %v are: %v", len(potentialNodes), len(sample), sample)
    }
    //获取PDB对象,PDB能够限制同时终端的pod资源对象的数量,以保证集群的高可用性
    pdbs, err := getPodDisruptionBudgets(pdbLister)
    if err != nil {
        return nil, err
    }
    //寻找符合条件的node,并封装成candidate数组返回
    return dryRunPreemption(ctx, ph, state, pod, potentialNodes, pdbs), nil
}

FindCandidates方法首先会获取node列表,然后调用nodesWherePreemptionMightHelp方法来找出predicates 阶段失败但是通过抢占也许能够调度成功的nodes,因为并不是所有的node都可以通过抢占来调度成功。最后调用dryRunPreemption方法来获取符合条件的node节点。

dryRunPreemption

func dryRunPreemption(ctx context.Context, fh framework.PreemptHandle, state *framework.CycleState,
    pod *v1.Pod, potentialNodes []*framework.NodeInfo, pdbs []*policy.PodDisruptionBudget) []Candidate {
    var resultLock sync.Mutex
    var candidates []Candidate

    checkNode := func(i int) {
        nodeInfoCopy := potentialNodes[i].Clone()
        stateCopy := state.Clone()
        //找到node上被抢占的pod,也就是victims
        pods, numPDBViolations, fits := selectVictimsOnNode(ctx, fh, stateCopy, pod, nodeInfoCopy, pdbs)
        if fits {
            resultLock.Lock()
            victims := extenderv1.Victims{
                Pods:             pods,
                NumPDBViolations: int64(numPDBViolations),
            }
            c := candidate{
                victims: &victims,
                name:    nodeInfoCopy.Node().Name,
            }
            candidates = append(candidates, &c)
            resultLock.Unlock()
        }
    }
    parallelize.Until(ctx, len(potentialNodes), checkNode)
    return candidates
}

这里会开启16个线程调用checkNode方法,checkNode方法里面会调用selectVictimsOnNode方法来检查这个node是不是能被执行抢占,如果能执行抢占返回的pods表示需要删除的节点,然后封装成candidate添加到candidates列表中返回。

selectVictimsOnNode

func selectVictimsOnNode(
    ctx context.Context,
    ph framework.PreemptHandle,
    state *framework.CycleState,
    pod *v1.Pod,
    nodeInfo *framework.NodeInfo,
    pdbs []*policy.PodDisruptionBudget,
) ([]*v1.Pod, int, bool) {
    var potentialVictims []*v1.Pod

    //移除node节点的pod
    removePod := func(rp *v1.Pod) error {
        if err := nodeInfo.RemovePod(rp); err != nil {
            return err
        }
        status := ph.RunPreFilterExtensionRemovePod(ctx, state, pod, rp, nodeInfo)
        if !status.IsSuccess() {
            return status.AsError()
        }
        return nil
    }
    //将node节点添加pod
    addPod := func(ap *v1.Pod) error {
        nodeInfo.AddPod(ap)
        status := ph.RunPreFilterExtensionAddPod(ctx, state, pod, ap, nodeInfo)
        if !status.IsSuccess() {
            return status.AsError()
        }
        return nil
    } 
    // 获取pod的优先级,并将node中所有优先级低于该pod的调用removePod方法pod移除
    podPriority := podutil.GetPodPriority(pod)
    for _, p := range nodeInfo.Pods {
        if podutil.GetPodPriority(p.Pod) < podPriority {
            potentialVictims = append(potentialVictims, p.Pod)
            if err := removePod(p.Pod); err != nil {
                return nil, 0, false
            }
        }
    }

    //没有优先级低的node,直接返回
    if len(potentialVictims) == 0 {
        return nil, 0, false
    }

    if fits, _, err := core.PodPassesFiltersOnNode(ctx, ph, state, pod, nodeInfo); !fits {
        if err != nil {
            klog.Warningf("Encountered error while selecting victims on node %v: %v", nodeInfo.Node().Name, err)
        }

        return nil, 0, false
    }
    var victims []*v1.Pod
    numViolatingVictim := 0
    //将potentialVictims集合里的pod按照优先级进行排序
    sort.Slice(potentialVictims, func(i, j int) bool { return util.MoreImportantPod(potentialVictims[i], potentialVictims[j]) }) 
    //将pdb的pod分离出来
    //基于 pod 是否有 PDB 被分为两组 violatingVictims 和 nonViolatingVictims
    //PDB:https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
    violatingVictims, nonViolatingVictims := filterPodsWithPDBViolation(potentialVictims, pdbs)
    reprievePod := func(p *v1.Pod) (bool, error) {
        if err := addPod(p); err != nil {
            return false, err
        }
        fits, _, _ := core.PodPassesFiltersOnNode(ctx, ph, state, pod, nodeInfo)
        if !fits {
            if err := removePod(p); err != nil {
                return false, err
            }
            // 加入到 victims 中
            victims = append(victims, p)
            klog.V(5).Infof("Pod %v/%v is a potential preemption victim on node %v.", p.Namespace, p.Name, nodeInfo.Node().Name)
        }
        return fits, nil
    }
    //删除pod,并记录删除个数
    for _, p := range violatingVictims {
        if fits, err := reprievePod(p); err != nil {
            klog.Warningf("Failed to reprieve pod %q: %v", p.Name, err)
            return nil, 0, false
        } else if !fits {
            numViolatingVictim++
        }
    } 
    //删除pod
    for _, p := range nonViolatingVictims {
        if _, err := reprievePod(p); err != nil {
            klog.Warningf("Failed to reprieve pod %q: %v", p.Name, err)
            return nil, 0, false
        }
    }
    return victims, numViolatingVictim, true
}

这个方法首先定义了两个方法,一个是removePod,另一个是addPod,这两个方法都差不多,如果是removePod就会将pod从node中移除,然后修改node一些属性,如将Requested.MilliCPU、Requested.Memory中减去,表示已用资源大小,将该pod从node节点的Pods列表中移除等等。

回到selectVictimsOnNode继续往下,会遍历node里面的pod列表,如果找到优先级小于抢占pod的就加入到potentialVictims集合中,并调用removePod方法,将当前被遍历的pod从node中移除。

接着会调用PodPassesFiltersOnNode方法,这个方法会运行两次。第一次会调用addNominatedPods方法将调度队列中找到节点上优先级大于或等于当前pod资源对象的nominatedPods加入到nodeInfo对象中,然后执行FilterPlugin列表;第二次则直接执行FilterPlugins列表。之所以要这么做,是由于亲和性的关系,k8s需要判断当前调度的pod亲和性是否依赖了nominatedPods。

继续往下会对potentialVictims按照优先级进行排序,优先级高的在前面。

接着会调用filterPodsWithPDBViolation方法,将 PDB 约束的 Pod和未约束的Pod分离成两个组,然后会分别遍历violatingVictims和nonViolatingVictims调用reprievePod方法对pod进行移除。这里我们在官方文档也可以看其设计理念,PodDisruptionBudget 是在抢占中被支持的,但不提供保证,然后将被移除的pod添加到victims列表中,并记录好被删除的删除pod个数,最后返回。

到这里整个FindCandidates方法就探索完毕了,还是比较长的,我们继续回到preempt方法中往下看,SelectCandidate方法会查找最佳抢占候选者。

SelectCandidate

func SelectCandidate(candidates []Candidate) Candidate {
    if len(candidates) == 0 {
        return nil
    }
    if len(candidates) == 1 {
        return candidates[0]
    }

    victimsMap := candidatesToVictimsMap(candidates)
    // 选择1个 node 用于 schedule
    candidateNode := pickOneNodeForPreemption(victimsMap)

    for _, candidate := range candidates {
        if candidateNode == candidate.Name() {
            return candidate
        }
    } 
    klog.Errorf("None candidate can be picked from %v.", candidates) 
    return candidates[0]
}

这个方法里面会调用candidatesToVictimsMap方法做一个name和victims映射map,然后调用pickOneNodeForPreemption执行主要过滤逻辑。

pickOneNodeForPreemption

func pickOneNodeForPreemption(nodesToVictims map[string]*extenderv1.Victims) string {
    //若该 node 没有 victims 则返回
    if len(nodesToVictims) == 0 {
        return ""
    }
    minNumPDBViolatingPods := int64(math.MaxInt32)
    var minNodes1 []string
    lenNodes1 := 0
    //寻找 PDB violations 数量最小的 node
    for node, victims := range nodesToVictims {
        numPDBViolatingPods := victims.NumPDBViolations
        if numPDBViolatingPods < minNumPDBViolatingPods {
            minNumPDBViolatingPods = numPDBViolatingPods
            minNodes1 = nil
            lenNodes1 = 0
        }
        if numPDBViolatingPods == minNumPDBViolatingPods {
            minNodes1 = append(minNodes1, node)
            lenNodes1++
        }
    }
    //如果最小的node只有一个,直接返回
    if lenNodes1 == 1 {
        return minNodes1[0]
    }

    minHighestPriority := int32(math.MaxInt32)
    var minNodes2 = make([]string, lenNodes1)
    lenNodes2 := 0
    // 找到node里面pods 最高优先级最小的
    for i := 0; i < lenNodes1; i++ {
        node := minNodes1[i]
        victims := nodesToVictims[node] 
        highestPodPriority := podutil.GetPodPriority(victims.Pods[0])
        if highestPodPriority < minHighestPriority {
            minHighestPriority = highestPodPriority
            lenNodes2 = 0
        }
        if highestPodPriority == minHighestPriority {
            minNodes2[lenNodes2] = node
            lenNodes2++
        }
    }
    if lenNodes2 == 1 {
        return minNodes2[0]
    }

    // 找出node里面Victims列表优先级加和最小的
    minSumPriorities := int64(math.MaxInt64)
    lenNodes1 = 0
    for i := 0; i < lenNodes2; i++ {
        var sumPriorities int64
        node := minNodes2[i]
        for _, pod := range nodesToVictims[node].Pods { 
            sumPriorities += int64(podutil.GetPodPriority(pod)) + int64(math.MaxInt32+1)
        }
        if sumPriorities < minSumPriorities {
            minSumPriorities = sumPriorities
            lenNodes1 = 0
        }
        if sumPriorities == minSumPriorities {
            minNodes1[lenNodes1] = node
            lenNodes1++
        }
    }
    if lenNodes1 == 1 {
        return minNodes1[0]
    }

    // 找到node列表中需要牺牲的pod数量最小的
    minNumPods := math.MaxInt32
    lenNodes2 = 0
    for i := 0; i < lenNodes1; i++ {
        node := minNodes1[i]
        numPods := len(nodesToVictims[node].Pods)
        if numPods < minNumPods {
            minNumPods = numPods
            lenNodes2 = 0
        }
        if numPods == minNumPods {
            minNodes2[lenNodes2] = node
            lenNodes2++
        }
    }
    if lenNodes2 == 1 {
        return minNodes2[0]
    }

    //若多个 node 的 pod 数量相等,则选出高优先级 pod 启动时间最短的
    latestStartTime := util.GetEarliestPodStartTime(nodesToVictims[minNodes2[0]])
    if latestStartTime == nil { 
        klog.Errorf("earliestStartTime is nil for node %s. Should not reach here.", minNodes2[0])
        return minNodes2[0]
    }
    nodeToReturn := minNodes2[0]
    for i := 1; i < lenNodes2; i++ {
        node := minNodes2[i] 
        earliestStartTimeOnNode := util.GetEarliestPodStartTime(nodesToVictims[node])
        if earliestStartTimeOnNode == nil {
            klog.Errorf("earliestStartTime is nil for node %s. Should not reach here.", node)
            continue
        }
        if earliestStartTimeOnNode.After(latestStartTime.Time) {
            latestStartTime = earliestStartTimeOnNode
            nodeToReturn = node
        }
    }

    return nodeToReturn
}

这个方法看起来很长,其实逻辑十分的清晰:

  1. 找出最少的的PDB violations的node节点,如果找出的node集合大于1则往下走;
  2. 找出找到node里面pods 最高优先级最小的node,如果还是找出的node集合大于1则往下走;
  3. 找出node里面Victims列表优先级加和最小的,如果还是找出的node集合大于1则往下走;
  4. 找到node列表中需要牺牲的pod数量最小的,如果还是找出的node集合大于1则往下走;
  5. 若多个 node 的 pod 数量相等,则选出高优先级 pod 启动时间最短的,然后返回。

然后preempt方法往下走到调用PrepareCandidate方法:

PrepareCandidate

func PrepareCandidate(c Candidate, fh framework.FrameworkHandle, cs kubernetes.Interface, pod *v1.Pod) error {
    for _, victim := range c.Victims().Pods {
        if err := util.DeletePod(cs, victim); err != nil {
            klog.Errorf("Error preempting pod %v/%v: %v", victim.Namespace, victim.Name, err)
            return err
        } 
        if waitingPod := fh.GetWaitingPod(victim.UID); waitingPod != nil {
            waitingPod.Reject("preempted")
        }
        fh.EventRecorder().Eventf(victim, pod, v1.EventTypeNormal, "Preempted", "Preempting", "Preempted by %v/%v on node %v",
            pod.Namespace, pod.Name, c.Name())
    }
    metrics.PreemptionVictims.Observe(float64(len(c.Victims().Pods)))

    //移除低优先级 pod 的 Nominated,更新这些 pod,移动到 activeQ 队列中,让调度器为这些 pod 重新 bind node
    nominatedPods := getLowerPriorityNominatedPods(fh.PreemptHandle(), pod, c.Name())
    if err := util.ClearNominatedNodeName(cs, nominatedPods...); err != nil {
        klog.Errorf("Cannot clear 'NominatedNodeName' field: %v", err)
        // We do not return as this error is not critical.
    }

    return nil
}

这个方法会调用DeletePod删除Victims列表里面的pod,然后将这些pod中的Status.NominatedNodeName属性置空。

到这里整个抢占过程就讲解完毕了~

总结

看完这一篇我们对k8s的抢占可以说有一个全局的了解,心里应该非常清楚k8s在抢占的时候会发生什么,例如什么时候时候哪些pod会执行抢占,以及为什么执行抢占,以及抢占了哪些pod的资源,对于被抢占的pod会不会重新被调度等等。

Reference

https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/

https://kubernetes.io/docs/concepts/configuration/pod-overhead/

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/

https://kubernetes.io/docs/tasks/run-application/configure-pdb/

https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/